Welcome to the Schnell Lab
We develop innovative models and methods to address the challenges of measurement, rigor, reproducibility, and robustness in complex biological systems.
The Schnell Lab is a theoretical research group specializing in mathematical, computational, and statistical approaches to tackle complex problems in the biomedical
sciences. Our theoretical models serve as powerful tools for hypothesis testing and data interpretation, driving discovery in partnership with experimental research
groups worldwide.
People
The SACNAS Distinguished Scientist Award, initiated in 1997, honors the highest levels of excellence in a science,
technology, engineering or mathematics research field.
People
Fellowship of the Royal Society of Biology is awarded to those who have made distinctive and notable contributions
to the advancement of the biological sciences.
Research
Collaborative project discovers a new molecular mechanism for how oocytes are made available for sustaining ovarian
function during the development of fetal ovaries.
We are deriving rate equations and developing standard based approaches to measure enzyme kinetic parameters.
We leverage mathematical modeling to dissect the complex biological mechanisms underlying rare diseases.
We are developing new metrics and models to measure and improve performance of scientists, research universities, and academic
policies.
-
Biophysical Chemistry 274, 106590.
-
-
The Journal of Physiology 597, 2317-2322.
- J. Eilertsen, S. Schnell, S. Walcher (2024).
The Michaelis-Menten reaction at low substrate concentrations: Pseudo-first-order kinetics and conditions for timescale separation.
Bulletin of Mathematical Biology 86, 68.
- M. S. DeNies, Allen P. Liu, S. Schnell (2024).
Seeing beyond the blot: A critical look at assumptions and raw data interpretation in Western blotting.
Biomolecular Concepts 15, 20220047.
- J. Eilertsen, S. Schnell, S. Walcher (2024).
The unreasonable effectiveness of the total quasi-steady state approximation, and its limitations.
Journal of Theoretical Biology 583, 111770.
- J. Eilertsen, S. Schnell, S. Walcher (2024).
Rigorous estimates for the quasi-steady state approximation of the Michaelis-Menten reaction mechanism at low enzyme concentrations.
Nonlinear Analysis: Real World Applications 120, e2219683120.
- K. Ikami, S. Shoffner-Beck, M. Tyczynska Weh, S. Schnell, S. Yoshida, E. A. Diaz Miranda, S. Ko, L. Lei (2023).
Branched germline cysts and female-specific cyst fragmentation facilitate oocyte determination in mice.
Proceedings of the National Academy of Sciences of the United States of America 120, e2219683120.
- J. Eilertsen, S. Schnell, S. Walcher (2023).
Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks.
Bulletin of Mathematical Biology 85, 48.
- M. A. Gingerich, J. Zhu, B. Chai, M. P. Vincent, N. Xie, V. Sidarala, N. A. Kotov, D. Sahu. D. J. Klionsky, S. Schnell, S. A. Soleimanpour (2023).
Reciprocal regulatory balance within the CLEC16A-RNF41 mitophagy complex depends on an intrinsically disordered protein region.
Journal of Biological Chemistry 299, 103057.
- S. Lauterbach, H. Dienhart, J. Range, S. Malzacher, J.-D. Spöring, D Rother, M. Filipa Pinto, P. Martins, C. E. Lagerman, A. S. Bommarius, A. V. Høst, J. M. Woodley, S. Ngubane, T. Kudanga, F. T. Bergmann, J. M. Rohwer, D. Iglezakis, A. Weidemann, U. Wittig, C. Kettner, N. Swainston, S. Schnell, J. Pleiss (2023).
EnzymeML at work: seamless data flow and modelling of enzymatic data.
Nature Methods 20, 400-402. github
- M. A. Gingerich, X. Liu, B. Chai, G. L. Pearson, M. P. Vincent, T. Stromer, J. Zhu, V. Sidarala, A. Renberg, D. Sahu, D. J. Klionsky, S. Schnell, S. A. Soleimanpour (2023).
An intrinsically disordered protein region encoded by the human disease gene CLEC16A regulates mitophagy.
Autophagy 19, 525-543.
- J. Range, C. Halupczok, J. Lohmann, N. Swainston, C. Kettner, F. T. Bergmann, A. Weidemann, U. Wittig, S. Schnell, J. Pleiss (2022).
EnzymeML - an exchange format for biocatalysis and enzymology.
FEBS Journal 289, 5864-5874. github
- J. Eilertsen, S. Schnell, S. Walcher (2022).
On the anti-quasi-steady-state conditions of enzyme kinetics.
Mathematical Biosciences 350, 108870.
- J. Eilertsen, K. Srivastava, S. Schnell (2022).
Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel.
Journal of Mathematical Biology 85, 3. code
- J. Eilertsen, S. Schnell (2022).
On the validity of the stochastic quasi-steady-state approximation in open enzyme catalyzed reactions: Timescale separation or singular perturbation?
Bulletin of Mathematical Biology 84, 7.